# Chap 2: Classical models for information retrieval 

Philippe Mulhem \& Jean-Pierre Chevallet

LIG-MRIM
Oct 2017

## Outline

1 Basic IR Models

- Set models
- Boolean Model

■ Weighted Boolean Model
2 Vector Space Model

- Weighting
- Exercices
- Implementing VSM

■ Leaning from user
(3) Solutions

## IR System



## IR Models



## Outline

1 Basic IR Models

- Set models
- Boolean Model
- Weighted Boolean Model

2 Vector Space Model - Weighting

- Exercices

■ Implementing VSM

- Leaning from user

3 Solutions

## Set Model

Membership of a set

- Queries are single descriptors
- Indexing assignments: a set of descriptors

■ In reply to a request, documents are either retrieved or not (no ordering)

- Retrieval rule: if the descriptor in the request is a member of the descriptors assigned to a document, then the document is retrieved (binary retrieval).

This model is the simplest one and describes the retrieval characteristics of a typical library where books are retrieved by looking up a single author, title or subject descriptor in a catalog.

## Example

## Query

"information retrieval"

## Doc1

\{"information retrieval", "database" , "salton" $\}$ $-->$ RETRIEVED < --

## Doc2

```
{ "database" ,"SQL"}
    -- > NOT RETRIEVED < --
```


## Set inclusion

- Query: a set of descriptors

■ Indexing assignments : a set of descriptors

- Documents are either retrieved or not (no ordering)
- Retrieval rule : document is retrieved if ALL the descriptors in the request are in the indexing set of the document (binary retrieval).

This model uses the notion of inclusion of the descriptor set of the request in the descriptor set of the document

## Set intersection

■ Query: a set of descriptors PLUS a cut off value $\tau$
■ Indexing assignments : a set of descriptors

- Documents are either retrieved or not (no ordering)

■ Retrieval rule : document is retrieved if it shares a number of descriptors with the request that exceeds the cut-off value (binary retrieval).

This model uses the notion of set intersection between the descriptor set of the request with the descriptor set of the document.

## Set intersection plus ranking

■ Query Q : a set of descriptors PLUS a cut off value $\tau$
■ Indexing assignments for a document D: a set of descriptors

- Retrieved documents are ranked

Retrieval rule: documents showing with the request more than the specified number of descriptors are ranked in order of decreasing overlap. Example (Sørensen-Dice overlap coefficient) : $\frac{2 .|Q \cap D|}{|Q|+|D|}$

## Outline

1 Basic IR Models

- Set models

■ Boolean Model

- Weighted Boolean Model

2 Vector Space Model - Weighting

- Exercices

■ Implementing VSM

- Leaning from user

3 Solutions

## Logical Models

Based on a given formalized logic:
■ Propositional Logic: boolean model $<--$
■ First Order Logic: Conceptual Graph Matching

- Modal Logic
- Description Logic: matching with knowledge
- Concept Analysis
- Fuzzy logic
- ...

Matching : a deduction from the query $Q$ to the document $D$.

## Boolean Model

■ Query is any boolean combination of descriptors using the operators AND $(\wedge)$, OR $(\vee)$ and NOT ( $\neg$ )

- Indexing assignments: a set of descriptors

■ Retrieved documents are retrieved or not
Retrieval rules:

- if Query $=t_{a} \wedge t_{b}$ then retrieve only documents with both $t_{a}$ and $t_{b}$
■ if Query $=t_{a} \vee t_{b}$ then retrieve only documents with either $t_{a}$ or $t_{b}$
■ if Query $=\neg t_{a}$ then retrieve only documents without $t_{a}$.


## Boolean Model

Knowledge Model : $T=\left\{t_{i}\right\}, i \in[1, . . N]$

- Term $t_{i}$ that index the documents

The document model (content) is a Boolean expression in the proposition logic, with the $t_{i}$ considered as propositions:

■ A document $D_{1}=\left\{t_{1}, t_{3}\right\}$ is represented by the logic formula as a conjunction of all terms direct (in the set) or negated.
$t_{1} \wedge \neg t_{2} \wedge t_{3} \wedge \neg t_{4} \wedge \ldots \wedge \neg t_{N-1} \wedge \neg t_{N}$

- A query Q is represented by any logic formula
- The matching function is the logical implication: $D \models Q$


## Boolean Model: relevance value

No distinction between relevant documents:

- $Q=t_{1} \wedge t_{2}$ over the vocabulary $\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$
- $D_{1}=\left\{t_{1}, t_{2}\right\} \equiv t_{1} \wedge t_{2} \wedge \neg t_{3} \wedge \neg t_{4} \wedge \neg t_{5} \wedge \neg t_{6}$
- $D_{2}=\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right\} \equiv t_{1} \wedge t_{2} \wedge t_{3} \wedge t_{4} \wedge t_{5} \wedge \neg t_{6}$

Both documents are relevant because: $D_{1} \supset Q$ and $D_{2} \supset Q$. We 'feel" that $D_{1}$ is a better response because "closer" to the query.
Possible solution : $D \supset Q$ and $Q \supset D$.

## Boolean Model: complexity of queries

■ $Q=\left(\left(t_{1} \wedge t_{2}\right) \vee t_{3}\right) \wedge\left(t_{4} \vee \neg\left(\neg t_{5} \wedge t_{6}\right)\right)$
Meaning of the logical $\vee$ (inclusive) different from the usual "or" (exclusive)

## Conclusion for boolean model

■ Model used till the 1990s.

- Very simple to implement


## Implementing the boolean model

Posting list:
■ List of unique doc id associates with an indexing term
Main set (list) fusion algorithms:

- Intersection, union and complement
- Algorithms depend on order.
- if lists, complexity is $O(n+m)$ ! So maintaining posting list ordered is important.


## Inverted File

Simplified figure (matrix instead of real inverted file structure):


## Implementing the boolean model

Left to exercise : produces the 3 algorithms: union, intersection and complement, with the following constraints:

- The two lists are read only
- The produced list is a new one and is write only

■ Using sorting algorithms is not allowed
Deduce from the algorithms the complexity.

## Outline

1 Basic IR Models

- Set models
- Boolean Model

■ Weighted Boolean Model
2 Vector Space Model - Weighting

- Exercices
- Implementing VSM
- Leaning from user

3 Solutions

## Weighted Boolean Model

Extension of Boolean Model with weights.
Weights denote the representativity of a term for a document.
Knowledge Model : $T=\left\{t_{i}\right\}, i \in[1, . . N]$
Terms $t_{i}$ that index the documents.
Queries are similar to Boolean model.
A document $D$ is represented by

- A logical formula $D$ (similar to Boolean Model)
- A function $W_{D}: T \rightarrow[0,1]$, which gives, for each term in $T$ the weight of the term in $D$. The weight is 0 for a term not present in the document.


## Weighted Boolean Model: matching

Non binary matching function based on Fuzzy logic
■ $\operatorname{RSV}(D, a \vee b)=\operatorname{Max}\left[W_{D}(a), W_{D}(b)\right]$
■ $R S V(D, a \wedge b)=\operatorname{Min}\left[W_{D}(a), W_{D}(b)\right]$

- $\operatorname{RSV}(D, \neg a)=1-W_{D}(a)$

■ Limitation: this matching using Min and Max does not take all the query terms into account.

## Weighted Boolean Model: matching

Non binary matching function based on a similarity function which take more into account all the query terms.

■ $\operatorname{RSV}(D, a \vee b)=\sqrt{\frac{W_{D}(a)^{2}+W_{D}(b)^{2}}{2}}$

- $R S V(D, a \wedge b)=1-\sqrt{\frac{\left(1-W_{D}(a)\right)^{2}+\left(1-W_{D}(b)\right)^{2}}{2}}$
- $\operatorname{RSV}(D, \neg a)=1-W_{D}(a)$

■ Limitation : query expression for complex needs

## Weighted Boolean Model: matching example

| Boolean |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Query <br> Document | a | b | $\mathrm{a} \vee \mathrm{b}$ | $\mathrm{a} \wedge \mathrm{b}$ | $\mathrm{a} \vee \mathrm{b}$ | $\mathrm{a} \wedge \mathrm{b}$ |
| $\mathbf{D}_{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| $\mathbf{D}_{2}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1} / \sqrt{2}=0.71$ | $1-1 / \sqrt{2}=0.29$ |
| $\mathbf{D}_{3}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1} / \sqrt{ } 2$ | $\mathbf{1}-\mathbf{1} / \sqrt{ } 2$ |
| $\mathbf{D}_{4}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |

## Weighted Boolean Model: matching example

$$
d 1=(0.2,0.4), d 2=(0.6,0.9), d 3=(0,1)
$$



## Outline

1 Basic IR Models

- Set models
- Boolean Model
- Weighted Boolean Model

2 Vector Space Model
■ Weighting

- Exercices
- Implementing VSM

■ Leaning from user
3 Solutions

## Vector Space Model

■ Query: a set of descriptors each of which has a positive number associated with it

- Indexing assignments : a set of descriptors each of which has a positive number associated with it.
- Retrieved documents are ranked

Retrieval rule : the weights of the descriptors common to the query and to indexing records are treated as vectors. The value of a retrieved document is the cosine of the angle between the document vector and the query vector.

## Vector Space Model

Knowledge model: $T=\left\{t_{i}\right\}, i \in[1, . ., n]$
All documents are described using this vocabulary.
A document $D_{i}$ is represented by a vector $d_{i}$ described in the $R^{n}$ vector space defined on $T$
$d_{i}=\left(w_{i, 1}, w_{i, 2}, \ldots, w_{i, j}, \ldots, w_{i, n}\right)$, with $w_{k, l}$ the weight of a term $t_{l}$ for a document.
A query $Q$ is represented by a vector $q$ described in the same vector space $q=\left(w_{Q, 1}, w_{Q, 2}, \ldots, w_{Q, j}, \ldots, w_{Q, n}\right)$

## Vector Space Model

The more two vectors that represent documents are ?near?, the more the documents are similar:


## Vector Space Model: matching

Relevance: is related to a vector similarity.
$R S V(D, Q)=\operatorname{def}^{\operatorname{SIM}}(\vec{D}, \vec{Q})$

- Symmetry: $\operatorname{SIM}(\vec{D}, \vec{Q})=\operatorname{SIM}(\vec{Q}, \vec{D})$

■ Normalization: SIM : $V \rightarrow$ [min, max]

- Reflectivity : $\operatorname{SIM}(\vec{X}, \vec{X})=\max$


## Outline

1 Basic IR Models

- Set models
- Boolean Model
- Weighted Boolean Model

2 Vector Space Model

- Weighting
- Exercices

■ Implementing VSM

- Leaning from user

3 Solutions

## Vector Space Model: weighting

Based on counting the more frequent words, and also the more significant ones.


## Zipf Law

Rank $r$ and frequency $f$ :

$$
r \times f=\text { const }
$$



## Heap's Law

Estimation of the vocabulary size $|V|$ according to the size $|C|$ (number of words) of the corpus:

$$
|V|=K \times|C|^{\beta}
$$

for English : $K \in[10,100]$ and $\beta \in[0.4,0.6]$ (e.g., $|V| \approx 39000$ for $|C|=600000, \mathrm{~K}=50, \beta=0.5$ )


Ti

## Term Frequency

## Term Frequency

The frequency $t f_{i, j}$ of the term $t_{j}$ in the document $D_{i}$ equals to the number of occurrences of $t_{j}$ in $D_{i}$.

Considering a whole corpus (document database) into account, a term that occurs a lot does not discriminate documents:


## Document Frequency: tf.idf

## Document Frequency

The document frequency $d f_{j}$ of a term $t_{j}$ is the number of documents in which $t_{j}$ occurs.

The larger the $d f$, the worse the term for an IR point of view... so, we use very often the inverse document frequency $i d f_{j}$ :

## Inverse Document Frequency

$i d f_{j}=\frac{1}{d f_{j}}$
$i d f_{j}=\log \left(\frac{|C|}{d f_{j}}\right)$ with $|C|$ is the size of the corpus, i.e. the number of documents.

The classical combination : $w_{i, j}=t f_{i, j} \times i d f_{j}$.

## matching

Matching function: based on the angle between the query vector $\vec{Q}$ and the document vector $\overrightarrow{D_{i}}$.
The smaller the angle the more the document matches the query.


## matching: cosine

One solution is to use the cosine the angle between the query vector and the document vector.

## Cosine

$$
\operatorname{SIM} M_{\cos }\left(\vec{D}_{i}, \vec{Q}\right)=\frac{\sum_{k=1}^{n} w_{i, k} \times w_{Q, k}}{\sqrt{\sum_{k=1}^{n}\left(w_{i, k}\right)^{2} \times \sum_{k=1}^{n}\left(w_{Q, k}\right)^{2}}}
$$

## Other matching functions

## Dice coefficient

$$
\operatorname{SIM}_{\text {dice }}\left(\overrightarrow{D_{i}}, \vec{Q}\right)=\frac{2 \sum_{k=1}^{N} w_{i, k} \times w_{Q, k}}{\sum_{k=1}^{N} w_{i, k}+w_{Q, k}}
$$

Discrete Dice coefficient

$$
S_{\text {dice }}\left(\vec{D}_{i}, \vec{Q}\right)=\frac{2\left|D_{i}^{\{ \}} \cap Q^{\{ \}}\right|}{\left|D_{i}^{\{ \}}\right|+\left|Q^{\{ \} \mid}\right|}
$$

## Outline

1 Basic IR Models

- Set models

■ Boolean Model

- Weighted Boolean Model

2 Vector Space Model - Weighting

- Exercices
- Implementing VSM
- Leaning from user

3 Solutions

## Matching cosine simplification

## Question

Transform the cosine formula so that to simplify the matching formula.

## Cosine

$$
\operatorname{SIM} M_{\cos }\left(\vec{D}_{i}, \vec{Q}\right)=\frac{\sum_{k=1}^{n} w_{i, k} \times w_{Q, k}}{\sqrt{\sum_{k=1}^{n}\left(w_{i, k}\right)^{2} \times \sum_{k=1}^{n}\left(w_{Q, k}\right)^{2}}}
$$

## Exercice: Similarity and dissimilarity and distance

The Euclidian distance between point $x$ and $y$ is expressed by :

$$
L_{2}(x, y)=\sum_{i}\left(x_{i}-y_{i}\right)^{2}
$$

## Question

Show the potential link between $L_{2}$ and the cosine.
Tips:

- consider points as vectors
- consider document vectors has normalized, i.e. with $\sum_{i} y_{i}^{2}$ as constant.


## Exercice: dot product and list intersection

The index is usually very sparse: a (usefull) term appears in less than $1 \%$ of document.
A term $t$ has a non null weight in $\vec{D}$ iff $t$ appears in document $D$

## Question

Show that the algorithm for computing the dot product is equivalent to list intersections.

## Outline

1 Basic IR Models

- Set models

■ Boolean Model

- Weighted Boolean Model

2 Vector Space Model - Weighting

- Exercices

■ Implementing VSM

- Leaning from user

3 Solutions

## Link between dot product and inverted files

If $R S V(x, y) \propto \sum_{i} x_{i} y_{i}$ after some normalizations of $y$, then :

$$
R S V(x, y) \propto \sum_{i, x_{i} \neq 0, y_{i} \neq 0} x_{i} y_{i}
$$

■ Query: just to proceed with terms that are in the query, i.e. whose weight are not null.

- Documents: store only non null terms.

■ Inverted file: access to non null document weight for for each term id.

## The index

■ Use a Inverted file like Boolean model

- Store term frequency in the posting list

■ Do not pre-compute the weight, but keep raw integer values in the index

■ Compute the matching value on the fly, i.e. during posting list intersection

## Matching: matrix product

With an inverted file, in practice, matching computation is a matrix product:


## Outline

1 Basic IR Models

- Set models

■ Boolean Model

- Weighted Boolean Model

2 Vector Space Model - Weighting

- Exercices

■ Implementing VSM
■ Leaning from user
3 Solutions

## Relevance feedback

To learn system relevance from user relevance:


## Rocchio Formula

## Rocchio Formula

$$
\vec{Q}_{i+1}=\alpha \vec{Q}_{i}+\beta \overrightarrow{R e}_{i}-\gamma n \overrightarrow{\operatorname{Re}} I_{i}
$$

With:

- $\overrightarrow{\operatorname{Re}} I_{i}$ : the cluster center of relevant documents, i.e., the positive feedback
■ $n \overrightarrow{R e} l_{i}$ : the cluster center of non relevant documents, i.e., the negative feedback
Note : when using this formula, the generated query vector may contain negative values.


## Conclusion

Common step for indexing:

- Define index set
- Automatize index construction from documents
- Select a model for index representation and weighting
- Define a matching process and an associated ranking

This is used for textual processing but also for other media.

## Outline

## 1 Basic IR Models

■ Set models

- Boolean Model
- Weighted Boolean Model

2 Vector Space Model

- Weighting
- Exercices

■ Implementing VSM

- Leaning from user

3 Solutions

## Solution: matching cosine simplification

Because $Q$ is constant, norm of vector $Q$ is a constant that can be removed.

$$
\begin{gathered}
K=\frac{1}{\sum_{k=1}^{n}\left(w_{Q, k}\right)^{2}} \\
\operatorname{SIM}_{\cos }\left(\vec{D}_{i}, \vec{Q}\right)=K \frac{\sum_{k=1}^{n} w_{i, k} \times w_{Q, k}}{\sqrt{\sum_{k=1}^{n}\left(w_{i, k}\right)^{2}}}
\end{gathered}
$$

## Solution: matching cosine simplification

The division of the document vector by its norm can be precomputed:

$$
w_{i, k}^{\prime}=\frac{w_{i, k}}{\sqrt{\sum_{k=1}^{n}\left(w_{i, k}\right)^{2}}}
$$

## Solution: matching cosine simplification

Hence, one juste has to compute a vector dot product:

$$
\operatorname{SIM}_{\cos }\left(\vec{D}_{i}, \vec{Q}\right)=K \sum_{k=1}^{n} w_{i, k}^{\prime} \times w_{Q, k}
$$

The constant does not influence the order:

$$
R S V_{\cos }\left(\vec{D}_{i}, \vec{Q}\right) \propto \sum_{k=1}^{n} w_{i, k}^{\prime} \times w_{Q, k}
$$

## Solution: Similarity et dissimilarity and distance

To transform a distance or dissimilarity into a similarity, simply negate the value. Ex. with the Squared Euclidian distance :

$$
\begin{gathered}
R S V_{D_{2}}(x, y)=-D_{2}(x, y)^{2}=-\sum_{i}\left(x_{i}-y_{i}\right)^{2} \\
=-\sum_{i}\left(x_{i}^{2}+y_{i}^{2}-2 x_{i} y_{i}\right)=-\sum_{i} x_{i}^{2}-\sum_{i} y_{i}^{2}+2 \sum_{i} x_{i} y_{i}
\end{gathered}
$$

if $x$ is the query then $\sum_{i} x_{i}^{2}$ is constant for matching with a document set.

$$
R S V(x, y)_{D_{2}} \propto-\sum_{i} y_{i}^{2}+2 \sum_{i} x_{i} y_{i}
$$

## Solution: Similarity et dissimilarity and distance

$$
R S V(x, y)_{D_{2}} \propto-\sum_{i} y_{i}^{2}+2 \sum_{i} x_{i} y_{i}
$$

If $\sum_{i} y_{i}^{2}$ is constant over the corpus then :

$$
\begin{aligned}
R S V(x, y)_{D_{2}} & \propto 2 \sum_{i} x_{i} y_{i} \\
R S V(x, y)_{D_{2}} & \propto \sum_{i} x_{i} y_{i}
\end{aligned}
$$

Hence, if we normalize the corpus so each document vector length is a constant, then using the Euclidean distance as a similarity, provides the same results than the cosine of the vector space model!

## Solution: dot product and list intersection

In the dot product $\sum_{i} x_{i} y_{i}$, if the term at rank $i$ is not in $x$ or $y$ then the term $x_{i} y_{i}$ is null and does not participate to the value. Hence,
If we compute directly $\sum_{i} x_{i} y_{i}$ using a list of terms for each document, then we sum the $x_{i} y_{i}$ only for terms that are in the intersection.
Hence, it is equivalent to an intersection list.

## Solution: efficiency of list intersection

If $X$ and $Y$ are not sorted, for each $x_{i}$ one must find the term in $Y$ by sequential search. So complexity is $\mathcal{O}(|X| \times|Y|)$
If $X$ and $Y$ are sorted, the algorithm uses two pointers:

- We start from the begining of the head of both lists
- Lets compare the pointers:
- If terms are equal : we can compute the merge (or the product), then move the tow pointers
- It terms are different: because of the order, one are sure the smaller term to net be present in the other list.
Hence one move at least one pointer on each list, the the complexity is: $\mathcal{O}(|X|+|Y|)$

