
Georges Quénot                     M2-MOSIG-IAR                        2017-2018 1

Multimedia Indexing and Retrieval
Visual content representation and retrieval

Georges Quénot
Multimedia Information Modeling and Retrieval Group

Laboratory of Informatics of Grenoble



Georges Quénot                     M2-MOSIG-IAR                        2017-2018 2

Outline

• Introduction

• Query by example versus search

• Descriptors

• Classification, fusion, post-processing ...

• Conclusion



Georges Quénot                     M2-MOSIG-IAR                        2017-2018 3

Introduction
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Multimedia Retrieval

• User need → retrieved documents
• Images, audio, video
• Retrieval of full documents or passages (e.g. shots)

• Search paradigms:
– Surrounding text → may be missing, inaccurate or incomplete
– Query by example → need for what you are precisely looking for
– Content based search (using keywords or concepts)                     
→ need for content-based indexing → “semantic gap problem”

– Combinations including feedback

• Need for specific interfaces
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The “semantic gap”

“... the lack of coincidence between the information 
that one can extract from the visual data and the 
interpretation that the same data have for a user in 
a given situation” [Smeulders et al., 2002].
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The “semantic gap” problem

Face
Woman
Hat
Lena
…

122 112 98 85 …

126 116 102 89 …

131 121 106 95 …

134 125 110 99 …

… … … … …

?
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Retrieval (query by examples)
versus indexing (for enabling query 

by key words / concepts)
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Query BY Example (QBE)

Descriptor Descriptors

Query Documents

Matching function

Scores (e.g. distance or relevance)

Extraction Extraction

Ranking

Sorted list
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Content based indexing by supervised learning

Descriptors Descriptors

Training documents Test documents

Train

Model

Extraction Extraction

Predict

Scores (e.g. probability of concept presence)

Concept annotations
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Example : the QBIC system
• Query By Image Content, IBM (stopped demo) 
http://wwwqbic.almaden.ibm.com/cgi-bin/photo-demo
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Descriptors
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Descriptors
• Engineered descriptors

– Color
– Texture
– Shape
– Points of interest
– Motion
– Semantic
– Local versus global
– …

• Learned descriptors
– Deep learning
– Auto encoders
– …
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Histograms - general form
• A fixed set of disjoint categories (or bins), numbered from 

1 to K.
• A set of observations that fall into these categories
• The histogram is the vector of K values h[k] with h[k] 

corresponding to the number of observations that fell into 
the category k.

• By default, the h[k] are integer values but they can also 
be turned into real numbers and normalized so that the h
vector length is equal to 1 considering either the L1 or L2
norm

• Histograms can be computed for several sets of 
observations using the same set of categories producing 
one vector of values for each input set
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Histograms – text example

• A vector of term frequencies (tf) is an histogram
• The categories are the index terms
• The observations are the terms in the documents 

that are also in the index
• A tf.idf representation corresponds to a weighting 

of the bins, less relevant in multimedia since 
histograms bins are more symmetrical by 
construction (e.g. built by K-means partitioning)
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Image intensity histogram

• The set of categories are the possible intensity values 
with 8-bit coding, ranging from 0 (black) to 255 (white) or 
ranges of these intensity values

256-bin 16-bin64-bin
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Image color histogram

• The set of categories are ranges of possible color values
• A common choice is a per component decomposition 

resulting in a set of parallelepipeds

• Any color space can be chosen (YUV, HSV, LAB …)
• Any number of bins can be chosen for each dimension
• The partition does not need to be in parallelepipeds

5×5×5-bin 
125-bin

3×3×3-bin 
27-bin

4×4×4-bin 
64-bin

R

G

B
Representations with the parallelepipeds’ center colors:
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Image color histogram
• The set of categories are ranges of possible color values

5×5×5-bin 
125-bin

3×3×3-bin 
27-bin

4×4×4-bin 
64-bin
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Image histograms
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Image histograms
• Can be computed on the whole image,
• Can be computed by blocks:

– One (mono or multidimensional) histogram per 
image block,

– The descriptor is the concatenation of the 
histograms of the different blocks.

– Typically : 4×4 complementary blocks but non 
symmetrical and/or non complementary choices are 
also possible. For instance: 2×2 + 1×3 + 1×1

• Size problem → only a few bins per dimension 
or a lot of bins in total
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Fuzzy histograms

• Objective: smooth the quantization effect 
associated to the large size of bins (typically       
4×4×4 for RGB).

• Principle: split the accumulated value into two 
adjacent bins according to the distance to the bin 
centers.
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Color correlograms
• Parallelepipeds/bins are taken in the Cartesian product 

of the color space by itself : six components 
H(r1,g1,b1,r2,g2,b2) (or only four components if the 
color space is projected on only two dimensions: 
H(u1,v1,u2,v2)). [Huang et al, 1997]

• Bi-color values are taken according to a distribution of 
the image point couples:

– At a given distance one from the other,
– And/or in one or more given direction.

• Allows for representing relative spatial relationships 
between colors,

• Large data volumes and computations
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Image normalization

• Objective : to become more robust again illumination 
changes before extracting the descriptors.

• Gain and offset normalization: enforce a mean and a 
variance value by applying the same affine transform to 
all the color components, non-linear variants.

• Histogram equalization: enforce an as flat as possible 
histogram for the luminance component by applying the 
same increasing and continuous function to all the color 
components.

• Color normalization: enforce a normalization which is 
similar to the one performed by the human visual: 
“global” and highly non linear.
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Texture descriptors

• Computed on the luminance component only
• Frequential composition or local variability
• Fourier transforms
• Gabor filters
• Neuronal filters
• Co-occurrence matrices
• Normalization possible.
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Gabor transforms

(Circular) Gabor filter of direction θ, of wavelength λ and of extension σ :

Energy of the image through this filter:
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λ

θ

σ
σ

θ

λ

σ

σ

λ

θ

Elliptic: Circular:

Gabor transforms
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Gabor Filters
Example of elliptic filters with 8 orientations and 4 scales
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Gabor filters in Fourier space
Elliptic filters with 6 orientations and 4 scales in the 
frequential domain (Fourier space)
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• Circular: 
– scale λ, angle θ, variance σ,
– σ multiple of λ, typically : σ = 1.25 λ,

(“same number” of wavelength whatever the λ value)

• Elliptic:
– scale λ, angle θ, variances σλ and σθ,

– σλ and σθ multiples of λ, typically : σλ = 0.8 λ et σθ = 1.6 λ,

• 2 independent variables:
– scale λ : N values (typically 4 to 8) on a logarithmic scale 

(typical ratio of √2 to 2)
– angle θ : P values (typically 8),
– N.P elements in the descriptor,

Gabor transforms
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Selection of points of interest
• “High curvature” points or “corners”,
• “Singular” points of the I[i][j] surface,
• Extracted using various filters:

– Computation of the spatial derivatives at several scales,
– Convolution with derivatives of Gaussians,
– Harris-Laplace detector.

• Interest points are selected, filtered and described
• 2D (image): Scale Invariant Feature Transform (SIFT) 

[Lowe, 2004]
• 3D (video): Space-Time Interest Points (STIP) [Laptev, 

2005]
• Variable number of points per image or per video shot →

need for aggregation
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Spatial derivatives on images
• First derivative 𝑓𝑓𝑓 𝑥𝑥 = limℎ→0

𝑓𝑓 𝑥𝑥+ℎ −𝑓𝑓 𝑥𝑥
ℎ

• Discrete version: 𝑓𝑓𝑓 𝑥𝑥 ~ 𝑓𝑓 𝑥𝑥+1 −𝑓𝑓 𝑥𝑥
1

• Symmetrized discrete version: 𝑓𝑓𝑓 𝑥𝑥 ~ 𝑓𝑓 𝑥𝑥+1 −𝑓𝑓 𝑥𝑥−1
2

• First derivatives of 𝐼𝐼 𝑥𝑥, 𝑦𝑦 : 
𝜕𝜕𝐼𝐼
𝜕𝜕𝜕𝜕

𝑥𝑥, 𝑦𝑦 ~ 𝐼𝐼 𝑥𝑥+1,𝑦𝑦 −𝐼𝐼 𝑥𝑥−1,𝑦𝑦
2

𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦

𝑥𝑥, 𝑦𝑦 ~ 𝐼𝐼 𝑥𝑥,𝑦𝑦+1 −𝐼𝐼 𝑥𝑥,𝑦𝑦−1
2

• Second derivatives of 𝐼𝐼 𝑥𝑥, 𝑦𝑦 : 
𝜕𝜕2𝐼𝐼
𝜕𝜕𝑥𝑥2

𝑥𝑥, 𝑦𝑦 ~ 𝐼𝐼 𝑥𝑥+1,𝑦𝑦 +𝐼𝐼 𝑥𝑥−1,𝑦𝑦 −2𝐼𝐼 𝑥𝑥,𝑦𝑦
1

…

• Use of convolutions for both computation and smoothing of 
derivatives
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Descriptors of points of interest
• SIFT descriptor: Histogram of gradient direction:

8 bins times 4 x 4 blocks in a neighborhood of the point.
• Neighborhoods are scaled according to the detector output
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Local versus global descriptors
• Global descriptors: single vector for a whole image
• Local descriptors: one vector for each pixel, image 

patch, image block shot 3D patch … e.g. SIFT or 
STIP

• Need for a single vector of fixed length far any 
image and with comparable components across 
images

• Aggregation of local descriptors → global 
descriptor
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Aggregation of local descriptors 
• Building of a single global descriptor

• Homogeneous with the local descriptor:
– max or average pooling

• Heterogeneous with the local descriptor:
– Histogramming according to clusters in the local 

descriptor space [Sivic, 2003][Cusrka, 2004]

– Gaussian Mixture Models (GMM)

– Fisher Vectors (FV) [Perronnin, 2006],Vectors of Locally 
Aggregated Descriptors (VLAD) [Jégou, 2010] or 
Tensors (VLAT) [Gosselin, 2011], Supervector
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Clustering
• Given a set (xi) of N data points in a metric space
• Find a set (cj) of K centers
• Minimizing the representation square error:

• Direct search not possible
• Use heuristics for finding good local minima
• Cluster j = subset (part) of the data space which is 

closest to center cj than to any other center
• The set of clusters is a partition of the data space
• This partition is adapted to the training data
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K-means Clustering
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K-means Clustering

• K-means is relatively fast and efficient compared to 
alternate and more complex methods

• The final result depends upon the choice of the initial 
centers; it is always possible to run it many times with 
different initial conditions and select the one obtaining the 
smallest representation error

• Tends do produce clusters of comparable size
• Convergence is guaranteed but it may take a large number 

of iterations and only a local minimum is guaranteed
• For practical applications, a full convergence is not 

necessary and does not make a big difference
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Hierarchical K-means Clustering
• Hierarchical K means may be faster (both for the 

clustering and the mapping) but less accurate
• The hierarchical structure of the set of clusters 

may be useful for some applications
• Two main strategies:

– Recursively split all the clusters into a (small) fixed number of sub-
clusters (e.g. recursive dichotomy) starting with a single cluster    
(→ regular n-ary tree)

– Recursively split in two parts only the biggest cluster into sub-
clusters (→ irregular binary tree)

• Hierarchical mapping: recursive search of the 
closest center from the coarsest to the finest grain.
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Semantic or intermediate descriptors
• Use of classifiers trained on other data and for other target 

concepts [Ayache, 2007]
• Vectors of scores of the other target concepts can be used 

as intermediate or high level descriptors (opposed to low-
level ones that are “close to the signal”)

• Semantic descriptors can be either global or local (e.g. on 
pixels or patches)

• Semantic descriptors carry different information than low-
level one and of higher semantic value

• The target concepts composing the semantic descriptors 
does not need to be related to the final target ones

• They do not need either to be recognized very accurately
• Semantic descriptors are often as good as or better than 

state of the art low-level ones and boost performance when 
combined with them
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Retrieval, indexing and fusion



Georges Quénot                     M2-MOSIG-IAR                        2017-2018 40

Query BY Example

Descriptor Descriptors

Query Documents

Correspondence function

Scores (e.g. distance or relevance)

Extraction Extraction

Ranking

Sorted list
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Query by example
• Single query sample:

– χ2, EMD or histogram intersection for histograms
– Euclidian Distance : searching for identities
– Angle between vectors : searching for similarities robust to illumination 

changes (for some other descriptors, e.g. Gabor transforms)

• Multiple queries or relevance feedback:
– Linear combination of distances with different weights for positively and 

negatively marked samples [Rocchio, 1971]
– Supervised learning from the marked samples (active learning)
– Rely also on the choice of a distance between global descriptions

• Direct matching and scoring between sets of local 
descriptors:

– Costly but good for searching specific instances rather than general 
categories
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Content based indexing by supervised learning

Descriptors Descriptors

Training documents Test documents

Train

Model

Extraction Extraction

Predict

Scores (e.g. probability of concept presence)

Concept annotations
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Content based indexing by supervised learning

• Training from annotated collections:
– LSCOM-TRECVid for videos
– Pascal VOC or ImageNet for still images
– Many others, e.g. Hollywood2 for actions in movies

• Use of supervised learning methods:
– Support Vector Machines (SVM), linear or RBF
– K nearest neighbors (KNN)
– Neural Networks (NN), Multi-Layer Perceptrons (MLP)
– Many others again
– Adaptations for highly imbalanced data sets

• Fusion if several descriptors and/or several 
learning methods are simultaneously used.
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Fusion
• Several possible descriptors
• Several possible classifiers or correspondence functions
• Early versus late fusion [Snoek, 2005]

– Early: concatenation of normalized descriptors

– Late: combination of classification scores

• Kernel fusion [Ayache, 2007]
– Fusion of kernels in RBF-based (e.g. SVM) learning methods

• These fusion methods are also applicable to query by 
example



Georges Quénot                     M2-MOSIG-IAR                        2017-2018 45

Common processing, single descriptor

Descriptors

Input documents

Decision

Extraction

Scores

Query,
search collection, 
training collection, 
test collection …

Color, texture,
bag of SIFTs …

Correspondence function,
train / predict

Similarity measure,
probability of presence
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Fusion of representations (early)

• For all vector description (of fixed size), whatever their 
origin,

• Possibility to concatenate the various descriptors in a unique 
mixed descriptor → normalization problem,

• Possibility to reduce la dimension of the resulting vector 
(and/or of each  original vector) in order to keep only the 
most relevant information:

– Principal Component Analysis,
– Neural networks (auto-encoders),
– Learning is needed (representative data and process).

• Less information, faster once learning is done,
• Euclidean distance on the shortened vector.
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Common processing, multiple descriptors, 
single decision (early fusion)

Descriptors

Input documents

Decision

Extraction

Scores

Descriptors

Extraction

Descriptors

Extraction

Fusion of descriptors (e.g. concatenation)

“Super descriptors”
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Fusion of scores (late)

• Each correspondence function generally produces a 
quantitative value that estimate a similarity (QBE case)

• It is always possible to come to the case in which the values 
are between 0 and 1 and represent a relevance

• In order to fuse the results from several functions, we may 
use :

– A weighted sum,
– A weighted product (weighted sum on the logarithms),
– The minimum value,
– A classifier (SVM, neural network, …)

• Problem for the choice of the weights and/or for the classifier 
training.
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Common processing, multiple descriptors, 
multiple decision (late fusion)

Descriptors

Input documents

Decision

Extraction

Scores

Descriptors

Extraction

Descriptors

Extraction

Fusion of scores (e.g. arithmetic mean)

“Consolidated scores”

Decision

Scores

Decision

Scores
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Re-ranking for concept classification

• Re-ranking (or re-scoring): use of detections scores for 
other concepts of for other samples for improving the 
detection of a given concept for a given sample

• Temporal re-scoring [Safadi, 2010]
– Re-score shots in a video with the hypothesis of a global or a local 

homogeneity of the contents

• Conceptual re-scoring [Hamadi, 2013]
– Re-score an image or video sample for several concepts using 

implicit (co-occurrences) or explicit (ontologies) between them

• Combination of both
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Conclusion
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Search at the signal level: conclusion

• Representation by different types of descriptors 
and evaluation of relevance by various functions,

• A single type: results from poor to average,
• Several types simultaneously: results from 

average to good with possible domain adaptation
• Possibility to adjust the compromise quality -

performance - general - size of the database
• Performance limited by the "analog" (not symbolic) 

aspect of representations
• High-level (semantic) descriptors greatly helps
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